
Velocity and Acceleration in the Polar Basis
Lizhou Sha∗

30 June 2020

1 Cartesian Coordinates Revisited
In 2D Cartesian coordinates, we can decompose the position vector r into a
sum of its coordinates (x, y) (also called components) multiplying the basis
vectors x̂, ŷ:

r = x x̂+ y ŷ. (1)
So how do we get the velocity vector? We take the total time derivative d/dt ,

which in Newton’s notation is written with an overdot like ṙ. We know that ṙ
must have the components (ẋ, ẏ), but we will calculate it in a more general way
by applying the product rule:

ṙ =
dr

dt
=

dx

dt
x̂+ x

dx̂

dt
+

dy

dt
ŷ + y

dŷ

dt
. (2)

Calculating the velocity vector this way may seem oddly pedantic, but it is
illustrative of what is to come. In general, basis vectors depend on coordinates,
a relationship we can write explicitly as a function x̂(x, y). You don’t usually
notice this dependence because the Cartesian basis vectors are fixed and do not
vary with coordinates; that is, the partial derivative of x̂(x, y) with respect to
either x or y is zero:

∂x̂

∂x
= 0,

∂x̂

∂y
= 0. (3)

Thus, when we try to explicitly calculate dx̂/dt using the multivariate chain
rule1, we will get zero:

dx̂

dt
=
�
�
�7
0

∂x̂

∂x

dx

dt
+

�
�
��
0

∂x̂

∂y

dy

dt
= 0, (4)

and Equation (2) reduces to

ṙ =
dx

dt
x̂+

dy

dt
ŷ = ẋ x̂+ ẏ ŷ (5)

∗This work is shared under a Creative Commons Attribution 4.0 International license.
1Be very careful about which derivatives are partial and which ones are total in (4)!
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as expected.
By the same argument, we can write the acceleration vector in terms of the

Cartesian basis vectors as

r̈ =
d2r

dt2
=

d2x

dt2
x̂+

d2y

dt2
ŷ = ẍ x̂+ ÿ ŷ. (6)

2 The Polar Basis Vectors
Just as we define the basis vectors x̂, ŷ for the Cartesian coordinates (x, y), we
can define r̂, θ̂ for the polar coordinates (r, θ). This time, however, the basis
vectors do depend on the coordinates. Figure 1 shows the polar basis vectors
for two position vectors r1 and r2. You can imagine that the basis vectors are
“attached” to the endpoints of the position vectors, with r̂ always pointing
radially outwards and θ̂ always pointing tangentially in the counterclockwise
direction.

To translate the geometric definition of r̂, θ̂ into algebra, we can write them
in terms of the Cartesian basis vectors:

r̂ = cos θ x̂+ sin θ ŷ, (7)
θ̂ = − sin θ x̂+ cos θ ŷ. (8)

The right triangles attached to r̂, θ̂ in Figure 2 illustrate this relationship.
Because of their dependence on θ, the total time derivatives of r̂ and θ̂ no

longer vanish. With some foresight, we calculate them now.
What is ˙̂r = dr̂/dt? Applying the multivariate chain rule to (7), we have

˙̂r =
∂ cos θ

∂θ

dθ

dt
x̂+

∂ sin θ

∂θ

dθ

dt
ŷ

=
dθ

dt
(− sin θ x̂+ cos θ ŷ)

= θ̇ θ̂.

(9)

This makes sense geometrically: if we vary the coordinate by a small amount ∆θ,
the resulting movement is circular, so r̂ must change in the tangential direction
θ̂ by ∆θ. See Figure 3 for an illustration of this geometric argument. Similarly,
we can show that

˙̂
θ = −θ̇ r̂. (10)

3 Velocity in the Polar Basis
Back to the problem of writing velocity and acceleration vectors in terms of the
polar basis vectors. First, we must write the position vector r in terms of our
new basis vectors. It turns out that r takes on a very simple form:

r = r (cos θ x̂+ sin θ ŷ)

= r r̂.
(11)
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Figure 1: How the polar basis vectors r̂ and θ̂ vary as the position changes from
r1 to r2.
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Figure 2: The dependence of polar basis vectors r̂ and θ̂ on θ (angle drawn in
red).

Figure 3: A geometric realization of ˙̂r = θ̇θ̂.
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You might be alarmed by the lack of θ in the last line, but never fear: r̂
already depends on θ. You can write this dependence explicitly as r = r r̂(θ),
but we rarely do so because it is always implied.

Emulating the procedure carried out in Equation (2) and referring to the
expression for ˙̂r in (9), we now take the total time derivative of r:

ṙ = ṙ r̂+ r ˙̂r

= ṙ r̂+ rθ̇ θ̂.
(12)

The velocity vector is split into a radial component ṙ and a tangential component
rθ̇. You may recognize rθ̇ as simply the formula for converting angular speed to
linear speed in circular motion.

4 Acceleration in the Polar Basis
We are now ready to tackle the final challenge: taking the total time derivative
once more. In Newton’s notation, we use the double overdot to write the second
time derivative:

d2r

dt2
= r̈,

d2r

dt2
= r̈,

d2θ

dt2
= θ̈, etc. (13)

Armed with the knowledge of ˙̂r and ˙̂
θ, however, all there is left to do is to

apply the chain rule consistently. There are 5 items in (12), so we begin with 5
terms in our answer:

r̈ = r̈ r̂+ ṙ ˙̂r+ ṙθ̇ θ̂ + rθ̈ θ̂ + rθ̇
˙̂
θ (14)

= r̈ r̂+ ṙθ̇ θ̂ + ṙθ̇ θ̂ + rθ̈ θ̂ − rθ̇2 r̂ (15)
=

(
r̈ − rθ̇2

)
r̂+

(
rθ̈ + 2ṙθ̇

)
θ̂. (16)

What does each of the four terms in (16) mean? We can interpret r̈ as
the purely “radial” acceleration and rθ̈ as the purely “tangential” acceleration.
You may remember that in circular motion, the centripetal acceleration is rθ̇2

pointing radially inwards. It turns out that the last term 2ṙθ̇ represents the
Coriolis force, which can be interpreted as a fictitious force in a rotating non-
inertial frame. Wikipedia does a far better job illustrating its effects than I can
hope to emulate2.

To summarize the various terms of acceleration in the polar basis:

r̈ =
(

r̈︸︷︷︸
radial

centripetal︷ ︸︸ ︷
− rθ̇2

)
r̂+

(
rθ̈︸︷︷︸

tangential

Coriolis︷ ︸︸ ︷
+ 2ṙθ̇

)
θ̂. (17)

2https://en.wikipedia.org/wiki/Coriolis_force
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5 Preview of the Kepler Problem
Why do we bother writing acceleration in terms of r̂ and θ̂? It all depends on
the kind of problems you want to solve. No one in their right mind would try
to solve linear motion in the polar basis when the Cartesian one suffices.

For problems that have rotational symmetry, however, the polar basis is
a natural choice. Later this week you will learn that angular momentum is
always conserved in central force problems (that is, the force only has a radial
component in r̂ but not θ̂). Here we show a quick proof using the polar basis.

In a central force problem, the force vector can be written as

F = f(r) r̂. (18)

By Newton’s second law, the resulting acceleration on a point of mass m is

r̈ =
F

m
=

f(r)

m
r̂. (19)

This means that the tangential component in (16) is zero:

rθ̈ + 2ṙθ̇ = 0. (20)

Applying a trick3 of multiplying both sides by r, we find that the left side can
be written as a total time derivative:

r2θ̈ + 2rṙθ̇ = 0, (21)
d

dt

(
r2θ̇

)
= 0. (22)

We will learn that the angular momentum of a point mass in the 2D plane
is simply mr2θ̇, with m a constant. Equation (22) shows us that the total time
derivative of this quantity is zero, that is, the quantity is constant over time.
Thus, angular momentum is conserved4.

The Kepler problem, which seeks the equations of motion of two bodies under
mutual gravitation, is a central force problem with f(r) ∝ 1/r2. Therefore, the
total angular momentum is also conserved in the Kepler problem. This is one
of the key insights that allow us to solve the Kepler problem in the course of
completing the OD project.

3https://knowyourmeme.com/memes/im-gonna-do-whats-called-a-pro-gamer-move
4It is not a coincidence that the force lacking a dependence on θ leads to the conservation

of angular momentum. The profound truth underlying this connection is Noether’s theorem,
which roughly states that every continuous symmetry of a physical system leads to a con-
servation law. For example, symmetry in position leads to the conservation of momentum,
and symmetry in time leads to the conservation of energy. Precisely stating and proving the
theorem require the machinery of Lagrangian mechanics, which is beyond the scope of SSP.
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